The Singlet-Triplet Gap of the Halonitrenium lons NHX⁺, NX₂⁺ and the Halocarbenes **CHX, CX₂** ($X = F$, CI, Br, I)

Albert0 Gobbi and Gernot Frenking"

Fachbereich Chemie, Universitat Marburg, Hans-Meerwein-Strasse, *D-3550* Marburg, Germany

Ab initio studies at the MP4/6-311G(2df)//MP2/6-31G(d) level of theory using effective core potentials for Brand I predict, that halonitrenium ions NX_2 ⁺ and NHX + $(X = F, CI, Br, I)$ have a $(1A_1)$ singlet ground state and a singlet-triplet gap between 57-12 for NX₂+ and 8-4 kcal mol⁻¹ (1 cal = 4.184 J) for NHX+; a comparison of experimental and theoretical results of the isoelectronic carbenes shows that the theoretical level is quite reliable.

The singlet-triplet gap of methylene has extensively been studied, both theoretically1 and experimentally.2 Also the $3B_1$ < $-1A_1$ excitation energy of halogen substituted methylenes CF_2 ,³⁻⁷ CCl_2 ,^{3,6,7} CBr_2 ,^{6,7} CHF ,^{3,4,7,8} $CHCl$,^{3,4,7,8} $CHBr^{4,7,8}$ and CHI⁴ was the subject of numerous studies. Much less is known about the isoelectronic nitrenium ions NX_2 ⁺ and NHX⁺ (X = F, Cl, Br, I). The only theoretical investigation of the singlet-triplet gap of halonitrenium ions is an earlier theoretical study of NF_2^+ and NHF^+ .⁹ NF_2^+ has been experimentally observed,¹⁰ but the excitation energy has not been measured yet. There are no experimental studies of other halonitrenium ions known to us.

We now report theoretically predicted equilibrium geometries and the relative energy for the energetically lowest ${}^{1}A_{1}$ and ${}^{3}B_{1}$ states of the halonitrenium ions $N\bar{X}_{2}$ + and NHX^{+} and the halocarbenes CX_2 and CHX $(X = F, Cl, Br, I)$. The geometries were optimized using Moller-Plesset perturbation theory11 terminated at second order (MP2) using the ECP by Hay and Wadt¹² for Br and I and the $6-31G(d)^{13}$ all electron basis set for the other atoms. The minimal valence basis sets for Br and I are uncontracted and augmented by a set of d-type polarisation functions¹⁴ *i.e.* the valence basis set is [21/21/1]. The energy second derivatives were calculated at this level of theory to predict the contribution of zero point vibrational energy (ZPE), which is scaled by 0.9.15 Improved total energies are predicted at the MP4(SDTQ) level using uncontracted ECP valence basis sets augmented by two sets of d functions¹⁴ and one set of f functions¹⁶ for Br and I [111/111/11/1] in conjunction with a 6-311G(2d, f)¹⁷ basis set for the other atoms. We will discuss the energies at this level of theory including the ZPE correction. All calculations were done using the Convex version of the GAUSSIAN 92 program series.¹⁸

The theoretically predicted energy differences between the $({}^{1}A_{1})$ singlet state and the $({}^{3}B_{1})$ triplet state for the carbenes and nitrenium ions in comparison with available experimental data and previously calculated results are shown in Table 1. The geometries are given in Table 2.

The nitrenium cation $NH₂$ ⁺ is theoretically predicted to have a ${}^{3}B_{1}$ ground state, which is 33.5 kcal mol⁻¹ lower in energy than the ${}^{1}A_{1}$ excited state. The experimentally

Fig. 1 Theoretically predicted energy differences **(kcal** mol-l) between the lowest lying ¹A₁ and ³B₁ states: $\Box = N X_2^+, \times = N H X^+,$ \diamondsuit = CX₂ and \triangle = CHX

^a Ref. 3. ^b Ref. 8. c Ref. 6. ^d Ref. 2.26. c Ref. 20. f Ref. 5. s Ref. 4. h Ref. 7. i Ref. 19. i Ref. 27. k Ref. 28. l Ref. 29. m Ref. 9.

Table 2 Theoretically calculated and experimentally observed geometries; interatomic distances AB (Å) angles ω (°)

	Calc. $MP2/6-31G(d)$						Exp.					
	1A_1			${}^{3}B_1$			1A_1			${}^{3}B_1$		
	$CN-X$	$C/N-H$	ω	$C/N-X$	XH	ω	$C/N-X$	$C/N-H$	ω	$CN-X$	$C/N-H$	ω
CH ₂		1.109	102.1		1.078	131.5		1.11^{a}	102.4 ^a		1.0748b	133.84b
CF ₂	1.315		104.2	1.329		119.8	1.3035c		104.8c			
CCl ₂	1.718		109.9	1.679		127.6	1.7157 ^d		109.2 ^d			
CBr ₂	1.893		111.0	1.840		129.9	1.74e		114e	1.74e		150 ^e
CI ₂	2.105		112.6	2.034		132.3						
CHF	1.320	1.121	101.9	1.329	1.086	121.2	1.305f	1.138f	104.1f			
CHCl	1.697	1.110	102.9	1.670	1.082	125.8	1.6968	1.1128	101.48			
CHBr	1.862	1.110	101.9	1.827	1.082	126.5						
CHI	2.068	1.111	101.3	2.018	1.084	128.2						
$NH2$ ⁺		1.049	108.3		1.034	151.1						
NF_2 ⁺	1.258		107.6	1.270		124.8						
$NCI2$ +	1.608		117.3	1.582		137.0						
NBr_2 ⁺	1.771		118.9	1.734		140.4						
$NI2$ ⁺	1.946		122.1	1.902		147.5						
$NHF+$	1.246	1.055	104.2	1.245	1.055	125.4						
NHCI ⁺	1.549	1.045	109.1	1.524	1.037	134.1						
$NHBr+$	1.704	1.042	107.9	1.669	1.033	134.5						
NHI^+	1.877	1.040	108.0	1.830	1.029	136.1						

a Ref. 30. b ref. 31. c Ref. 32. d Ref. 33. c Ref. 34. f Ref. 35. s Ref. 36.

determined ${}^{1}A_1 \leftarrow {}^{3}B_1$ excitation energy is 30.1 kcal mol⁻¹,¹⁹ 3.4 kcal mol⁻¹ less than the calculated value. The singlettriplet gap of NH₂⁺ is larger than that of CH₂. The ¹A₁ \leftarrow ³B₁ excitation energy of methylene is 9.0 kcal mol^{-1} , 2.20-22 the calculated value is 12.9 kcal mol⁻¹. The difference between the calculated and experimental values is due to the oneconfigurational treatment of the singlet state.^{7,23}

A ground state with ${}^{1}A_{1}$ symmetry is theoretically predicted for NF_2 ⁺, 57.3 kcal mol⁻¹ lower in energy than the ³B₁ excited state. This is nearly the same value for the ³B₁ \leftarrow ¹A₁ excitation energy as calculated for CF₂ (57.6 kcal mol⁻¹). Since the latter result is in good agreement with the experimentally determined singlet-triplet gap (56.7 kcal mol⁻¹),⁵ we think that the theoretical value for $\hat{N}F_2$ ⁺ is quite reliable. Also for the other dihalonitrenium ions NX_2 ⁺ are the calculated ${}^{3}B_1 \leftarrow {}^{1}A_1$ excitation energies very close to the theoretical results for the corresponding dihalocarbenes $CX₂$ (Table 1). The singlet-triplet gap becomes smaller for NX_2^+ and CX_2 in the order $X = \overline{F}$ >> Cl > Br > I. All halogen substituted nitrenium ions and carbenes are predicted to have a ground state with ${}^{1}A_{1}$ symmetry.

The singlet-triplet gap of the monohalogen substituted nitrenium ions $N\dot{H}X^{+}$ is calculated as slightly different to the corresponding CHX molecules (Table 1). While the ${}^{3}B_1 \leftarrow$ ¹A₁ excitation energy for CHX becomes smaller in the same order as predicted for CX_2 , the nitrenium ions NHX⁺ are calculated with higher excitation energies for NHI+
(7.5 kcal mol⁻¹) > NHBr+ (6.4 kcal mol⁻¹) > NHCl+ (4.1) kcal mol⁻¹). No experimental data for the ${}^{3}B_1 \leftarrow {}^{1}A_1$ excitation energy of halonitrenium ions are known to us. Because the calculated values for the halocarbenes are in good agreement with experiment and previous high-level theoretical studies (Table 1), we expect the calculated singlet-triplet gaps for the nitrenium ions to be rather accurate.

The calculated geometries for the nitrenium ions and the carbenes are shown in Table 2. Because the agreement of the theoretical and experimental values for the carbenes is generally quite good, we think that the results for the nitrenium ions are reliable. The bending angles X-N-H and X-N-X in the nitrenium ions are always larger than the corresponding X-C-H and X-C-X angles in the carbenes. For both molecule types holds that the ${}^{3}B_1$ state has a significantly larger bending angle than the ${}^{1}A_1$ state. These trends can be explained using Mulliken-Walsh²⁴ type diagrams.²⁵

Financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged. Additional support was provided by the computer companies Convex and Silicon Graphics.

Received, 13th April 1993; Corn. 3/02123H

References

- 1 H. F. Schaefer 111, *Science,* 1986, 231, 1100; P. R. Bunker, in *Comparison of ab initio Quantum Chemistry with Experiment,* ed. R. J. Bartlett, Reidel, Dordrecht, 1985.
- 2 A. R. W. McKellar, P. R. Bunker, T. **J.** Sears, K. M. Evenson, R. J. Saykally and **S.** R. Langhoff, *J. Chem. Phys.,* 1983,79,5251; D. G. Leopold, K. K. Murray and W. C. Lineberger, *J. Phys. Chem.,* 1984, 81, 1048; D. G. Leopold, K. K. Murray, A. E. **S.** Miller and W. C. Lineberger, *J. Phys. Chem.,* 1985, 83, 4849; P. R. Buenker and T. J. Sears, *J. Chem. Phys.,* 1985,83,4866.
- 3 E. **A.** Carter and W. A. Goddard 111, *J. Phys. Chem.,* 1987, 91, 4651; *J. Chem. Phys.,* 1988,88, 1752; **S.** K. Shin, W. A. Goddard I11 and J. L. Beauchamp, *J. Phys. Chem.,* l990,94,6963;J. *Chem. Phys.,* 1990, 93, 4986.
- 4 K. K. Murray, D. G. Leopold, T. M. Miller and W. C. Lineberger, *J. Chem. Phys.,* 1988, 89, 5442.
- *5* **S.** Koda, *Chem. Phys. Lett.,* 1978,55,353; *Chem. Phys.,* 1986,66, 383.
- 6 G. L. Gutsev and T. Ziegler, *J. Phys. Chem.,* 1991, 95, 7220.
- 7 C. W. Bauchschlicher, H. F. Schafer and P. **S.** Bagus, *J. Am. Chem. SOC.,* 1977,99,7106; C. W. Bauchschlicher, *J. Am. Chem.* Soc., 1980, 102, 5492.
- 8 G. E. Scuseria, M. Durán, G. A. R. Maclagan and H. F. Schaefer 111, *J. Am. Chem. SOC.,* 1986, 108, 3248.
- 9 J. F. Harrison and C. W. Eakers, *J. Am. Chem. SOC..* 1973, 95, 3467.
- 10 A. B. Cornford, D. C. Frost, F. G. Herring and C. A. McDowell, *J. Chem. Phys.,* 1971, 54, 1872.
- 11 C. Mgiller and M. **S.** Plesset, *Phys. Rev.,* 1934, 46, 618; J. **S.** Binkley and J. **A.** Pople, *Int. J. Quant. Chem.,* 1975, **9S,** 229.
- 12 W. R. Wadt and P. J. Hay, *J. Chem. Phys.,* 1985, 82, 284.
- 13 W. J. Here, R. Ditchfield and J. **A.** Pople, J. *Chem. Phys.,* 1972, 56, 2257.
- 14 The exponents are $\zeta_d = 0.428$ (Br) and $\zeta_d = 0.289$ (I): A. Hollwarth, M. Bohme, **S.** Dapprich, A. W. Ehlers, A. Gobbi, **V.** Jonas, K. **F.** Kohler, **A.** Veldkamp, G. Frenking, *Chem. Phys. Lett.,* in the press.
- 15 R. F. Hout, B. A. Levi and W. J. Here, *J. Comput. Chem.,* 1982, 3,234; W. J. Here, L. Random, P. v. R. Schleyer and J. **A.** Pople, *Ab initio Molecular Orbital Theory,* Wiley, New York 1986.
- 16 The exponents of the f function are 0.569 (Br), 0.433 (I): **A.** Gobbi and G. Frenking unpublished.
- 17 R. Krishnan, J. **S.** Binkley, R. Seeger and J. A. Pople, *J. Chem. Phys.,* 1980,72,650; A. D. McLean and G. **S.** Chandler, *J. Chem. Phys.,* 1980, 72, 5639.
- 18 GAUSSIAN 92, M. J. Frisch, **G.** W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. **A.** Robb, E. **S.** Replogle, T. Gomperts, J. L. Andres, K. Raghavachari, J. **S.** Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1992.
- 19 **S.** T. Gibson, J. P. Greene and J. Berkowitz, *J. Chem. Phys.,* 1985, 83, 4319.
- 20 E. A. Carter and W. A. Goddard 111, *J. Chem. Phys.,* 1987, 86, 862.
- 21 C. W. Bauchschlicher, **S.** R. Langhoff and P. R. Taylor, *J. Chem. Phys.,* 1987, 87, 387.
- 22 C. L. Jansen and H. F. Schaefer 111, *Theor. Chim. Acta,* 1991,79, 1.
- 23 J. H. Meadows and H. F. Schaefer 111, *J. Am. Chem. SOC.,* 1986, 98, 4383.
- 24 R. **S.** Mulliken, *Rev. Mod. Phys.,* 1942, 14, 204; **A.** D. Walsh, *J. Chem. Soc.,* 1953,2260; R. J. Buenker and **S.** D. Peyerimhoff, *Chem. Rev.,* 1974,74,127; B. M. Gimarc, *Molecular Structure and Bonding: The Quantitative Molecular Orbital Approach,* Academic Press, New York, 1979.
- 25 G. Frenking and W. Koch, *Chem. Phys. Lett.,* 1987, 138, 503.
- 26 P. Jensen and P. R. Bunker, *J. Chem. Phys.,* 1988, 89, 1327.
- 27 S. J. Dunlavey, J. M. Dyke, N. Jonathan and **A.** Morris, *Mol. Phys.,* 1980, 39, 1121.
- 28 G. P. Ford and P. **S.** Herman, J. *Am. Chem. Soc.,* 1989,111,3987.
- 29 **S.** D. Peyerimhoff and R. J. Buenker, *Chem. Phys.,* 1979,42,167.
- 30 *G.* Herzberg and J. W. C. Johns, *Proc. R. SOC. London Ser. A,* 1966,295, 107.
- 31 P. R. Bunker and P. Jensen, *J. Chem. Phys.,* 1983, 79, 1224; P. Jensen, P. R. Bunker and A. R. Hay, *J. Chem. Phys.,* 1982, 77, 5370.
- 32 W. H. Kirchhoff, D. R. Lide and **F. X.** Powel, *J. Mol. Spectrosc.,* 1973, 47, 491.
- 33 M. Mujitake and E. Hirota, *J. Chem. Phys.,* 1989, 91, 3426.
- 34 R. C. Ivery, P. D. Schultze, T. C. Leggett and D. **A.** Kohl, *J. Chem. Phys.,* 1974, 60, 3174.
- 35 T. Suzuki, **S.** Saito and E. Hirota, *J. Mol. Spectrosc.,* 1981, 90, 447.
- 36 M. Kakimoto, **S.** Saito and E. Hirota, *J. Mol. Spectrosc.,* 1983,97, 194.